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THREE ASPECTS OF THE STATISTICS OF DIRECTIONS

by

Geoffrey S. Watson
Princeton University

A B ST RA CT

This paper is a selection of topics from three lectures given

to the 21st Summer Research Institute of the Australian Mathe-

matical Society. Lecture 1 gave scientific problems yielding

data which are unit vectors--directions--in two and three dimen-

sions. Methods of displaying and summarizing the data were

illustrated. Lecture 2 began with the uniform distribution on a

sphere of unit radius in q dimensions, then non-uniform disT

tributions were discussed, especially those that arise in certain

stochastic processes. Lecture 3 was devoted to a summary of

statistical inference methods and concluded with some remarks on

problems of greater generality suggested by our subject.

This research was supported in part by a contract with the Office
of Naval Research, No. NOOO14-79-C-0322, awarded to the Depart-
ment of Statistics, Princeton University.
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1. THE STUDY OF ORIENTATION DATA.

Geology and geophysics were the first sciences to require the analysis

of orientation data. In geology, the orientation of pebbles and bedding

planes and other bodies gives directions with and without sense. The latter

(e.g. a normal to a plane) are often called axial directions for lack of a

better term. The orientation of crystals leads to rotation matrices. Here

we will only consider directions i.e. (signed) unit vectors. They were

first given serious study when Fisher (1953) wrote a paper for paleomagnetic

workers. This was this writer's initial motivation. A survey of applica-

tions is given in Watson (1970). Later biologists interested in the homing

directions of pidgeons provided two dimensional data and further problems.

As will be seen, the study of dlctional data forces us to modify

the methods and, more interestingly, the concepts which statisticians have

long used for analyzing vector data. The shift from observations xIR q

to observations xcfq , the surface of the unit ball in IRq requires new

ideas. In practice, we have only so far needed methods of f12 and o3

the circle and sphere.

Given n data points x1,...,xn enq , we need first methods for

looking at the data. For q=2 , the points may be marked on a circle since

they are 1-1 with angles. If [0,2w) is split into intervals, a fre-

quency distribution is obtained. A histogram using sectors rather than

boxes is called a "rose diagram"--the radius is usually proportional to

the frequency but it is better to use the square root of the frequency.

This transformation stabilizes the variance which makes eye-inspection for

peaks or modes easier. In simple cases, the data will show only one modal
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or "preferrea" direction in which case we then need some measure of "disper-

sion" about this direction. With larger samples we might wish to use a

non-parametric density estimator. We will return to these questions.

To see spherical data, it is usually only practical to look at plane

projections of the points. The computer allows us easily to rotate the

data--often it is mainly one hemisphere. It is then natural to use an equal

area projection. If the rotated points are identified with their spherical

polar angles e(colatitude), *(longitude), the spherical area element

sineded should equal the planar area element pdpd . Hence we find

p=21sine/21 . This Lambert projection is called the Schmidt net in Geology.

If the data x1i,...xn seems to be uni-modal, it is natural to
n

define the modal-direction to be the unit vector 1i parallel to R=xj,

the vector resultant or sum of the data. If the data is widely dispersed,

the length 1IRII of R will be much smaller than n . If it is tightly

clustered about , AJR! will be almost n . Hence n-I!RI! is a measure

of dispersion of the data set, an analogue in fact of the reciprocal

E(xj-x) 2 for the familiar case when the xi are real numbers. So we may
n-i

expect that _ and P will in some way play the roles of the familiar

mean and variance. Of course if the data cluster is not fairly rotationally

symmetric about 1 , more than one number will be needed to describe its

dispersion.
n~x

If the data points xj are regarded as unit masses, i x. is their

center of gravity. As we have just seen, the position of this point within

the sphere tells us something about the distribution of the data. The

moment of inertia clearly tells us something more. This leads us to suggest
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the computation of

n
M ExZx x'

where x_ is the transpose of the column vector x. . For the value of

v'lV=z(v'xj)2 will change as the unit vector v varies. The stationary

values are the eigen values of M . If, for example, the data points lie

fairly uniformly around a great circle, one eigen value will be much

smaller than the others which will be nearly equal--for there is a v

nearly orthogonal to all the data and this is the eigen vector associated

with the minimum eigenvalue. The reader can easily see what would be

suggested by equal eigen values or one dominating eigen value. Note that
n n

trace M=E trace x x' = Ex~x = n
1 '3 IJ

Thus one should add to the rotation and projection program, these

trivial computations and have the results printed out below the pictures

which we obtain by making hard copies from a Textronics (C.R.T.) terminal.

With real data,power moments are sometimes used. For circular data
1 n1 . ... LJ 'sink8.)

x <->e, it is even more natural to use i EexpikeO = ,coske. ,

for integer k because for any density on the circle with a Fourier series
w1n

representation f(e)=E cm expime , the expectation of n' E expike is

C k . This leads to a non-parametric density estimator--see Watson (1969).

For the sphere, spherical harmonics may be used in a similar way.

For data x1,...,xn on 92q , a non-parametric density estimator of

the kernel type may be constructed as follows. Let 6n (x;z) be a sequence

of probability densities on pq corresponding to probability distributions

which concentrate on the fixed unit vector z as n-.o . For example the
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density

e(ctn )exp n X'Z (1)

could be used with an- as n - Then the estimator

1n
fn(Z) z 6 (x.;z) (2)n nj-1 n

will become unbiased as n-w since

E?n(Z) = 6n(x;z)f(x)dw

where dw is the area element on fq Then

Ef (Z)f(z) , as n-mv

Furthermore

1
var Tn(Z) = var 6n(X;z)

= *f6n(x;z)f(z)dw - (E~n(Z))2}

f(z) f 6,(x;z)d, as n-m
n n

so that E(fn(z)-f(z)) 2- 0 provided that $62(x;z)dw tends to infinity

n n
slower than n .

With the choice (1), the estimator (2) is easily programmed. To see

the result we also need a contouring program. The contours may be shown,

along with the original data points, by using the Lambert projection men-

tioned above. The neatest method uses overlaid transparencies. The notion of a
kernel estimator seems to occur first in Watson (1970) but the first implementa-

tion, much as I have described here, seems to be in a thesis on polar wander-

ing by Alstine (1979).
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In Lecture 1, all these methods were illustrated on a data set--the

normals to the orbits of all the comets in the latest Smithsonian Catalogue

(1979).

As will be explained in the next section, for uni-modal distributions

with rotational symmetry, the most commonest model is the density

c(K) exp K x'P (3)

where is the modal direction and K is an accuracy parameter. It is

therefore important to have a quick method to check the fit of (3) to data.

For q=3 , it will be shown below that:

* is uniformly distributed on [0,21r) (4)

independently of

exp-K(1-cose) which is approximately uniformly (5)
distributed oi 10,1].

It is easy to check uniformity--we may use histograms, (or their computer

form, stem & leaf plots), P-P or Q-Q plots (essentially the same for uniform

distributions). To carry this out for (5), it is necessary to use an

estimator of K e.g. the estimator (n-1)(n-jRj) "I may be used. For q-2,

(3) may be written

2i1 (i expKcose (6)

0

where cose-x'u and 10(K) is a Bessel function. Using the maximum likeli-

hood estimators of U and K (see Section 3), it is easy to compute an

approximate P-P plot.
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In Lecture 1, these quick checks of (3) for q=2,3 were illustrated

on the comet data and no subset of comets was found to fit this

distribution.

!~Ili-
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2. PROBABILITY DISTRIBUTIONS ON flj

In the notation of MUller (1966), let d be the area element on
q

q= {xlxcTRq,llxll = 1} , In qI be the area of nq . If El...Cq are

orthonormal vectors in IR , and xd.q , then

q-1 q
Where t=x'c , (q- = unit vector in the space spanned by c,., q and

dq =  
q-1

so that q q- 1(...)")/~

wq = 2 rq/2 / r(q/2)

The characteristic function, or Fourier transform, of any density

f(x) on aq is given by

E(expie'x) = f expiO'x f(x)dwq , BeIR
Qlq

The fundamental distribution on Qq is the uniform distribution with

density In q -l . Setting e=ea , aenq . a'x=t , we find that

E(expiet) = () r(v+1/2) (7)
Wq (e/2)V

where v-(q-l)/2 and Jr(e) is a Bessel function.
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n
If now Y=a'(Zxj)=t1 +...+t , the characteristic function of Y is

I
the n-th power of (7). Hence the density of Y may be formally obtainedn

by inverting the n-th power of (7). The distribution of IIzx-1I can then
1 n

be deduced from the additional observation that the direction of Ex. is

uniform.

While the exact distribution of the length of the sum of n independent

and uniformly distributed vectors may be deduced this way, it is an analytically

awkward result. However it is easy to obtain an excellent approximation when

n is not small. For

jl 112 = Z2 +...+ Z2= IIZI1 2

where Zk = sum of the k-th coordinates of xl,...,xn . By the Central

Limit Theorem, these sums become Gaussian. For all n , the mean vector and

covariance matrix of Z are respectively 0, nIq /q . Hence the asymptotic

distribution of qR2/n is the chi-square distribution with q degrees of

freedom. This result for q=2,3 goes back to Rayleigh (1880,1919) and is

central to the problem of random flights, or as it was first called by Pearson

(1905), random walks. The flights were of mosquitoes and the problem was

raised in this form by Sir Ronald Ross' speculations of the spread of fevers.

Rayleigh was concerned with the random phases of sound.

The random walks not only serve as a basic model in many areas of

science but have deep and wide connections with mathematics. The literature

on them is vast.

Non-uniform distributions are interesting to statisticians for one of

several reasons:

kM
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(i) they fit data

(ii) they arise from stochastic modelling and

(iii) it is easy to derive inference methods for them.

With the advent of computers (iii) is less compelling than it once was.

ftrther with the mathematical techniques available now for large sample

theory, (iii) is also less important.

Densities which have been suggested with an eye on (i) and (iii) are:

x,ac.Q

f - expa'x , (8)

(rotational symmetry about a single mode)

f - expi(a'x) 2  (9)

(two equal but opposite modes K>o , a girdle distribution K<o , rotational

symmetry)

f c expia'x + A(ax)2  (10)

(two unequal but opposite clusters, rotational symmetry)

The use of the exponential rather than a more general function is due to (iii)

for the joint density of independent observations is the product of the

densities--this will become clearer to non-statisticians in Section 3.

The modelling approach--asking what processes actually led to the data--

often reveals that the directions are in fact the directions of random

vectors whose lengths have been ignored. This is so in paleomagnetism for



-10-

example. Let X be a random vector in IRq with density f(x) with length

r so X=yt where JI21=l so 2 C Q q Then the density of i is

q-1g(t) = f f(rt)r 'dr (11)

0

For example if X is Gaussian with mean vector p and covariance matrix Z

the density g is then called the angular Gaussian. Special cases have

special names.

Work in structural geology led the writer to consider Y=TX where

ITI=detT>O . Setting Y=rm with mcQq , it follows from (8) that the density

of m , h(m) is defined by

1 1 a(T lM/IIT-lm (12)
h(m) = T7 - I Tim Iq  (12)

The righthand side of (12)is unchanged if T-kT so there is no loss of

generality in taking ITI=l . The transformation Y=TX is a homogeneous

strain so we see that if only the orientations are known, one may not deter-

mine the dilatation ITI of the strain.

A most elegant formula is easily deduced from (12),

f )IT-'mll'qd q = Wq )detTj (13)

q

There are many more interesting formulae of this type. Again, we may derive

the density

g(t) =JL T q  ITI>O , I c sq
Oq T9,11

= g(-L) . (14)

Mmd
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If we may set T=Z " /2 , I positive definite, (14) becomes

g(k) =-

which has been noted before by several authors (e.g. King (1980).

The above paragraph has used the marginal density of vectors, integrating

out their length. Conditional distributions (given that their length is

unity) don't seem to arise in modelling but are of mathematical interest.

For example if X is Gaussian mean V covariance a2 q , the density func-
q

tion of X is proportional to

~1exp - (x'x - 2xu +

so the conditional distribution of x , given jIxjj=l is proportional to

exp1 x , (16)

as was first pointed out by Fisher.

This density (16) has arisen above--(8). For q=2 it was first sug-

gested by vonMises (1918). For q=2,3, it was suggested and briefly studied

by Arnold (1941). For q=3 , it was the basis of Fisher's (1953) paper.

Another distribution whose mathematical formis convenient for

statistical inference has

f z exp x'Kx ( K a symmetric matrix)

and was studied by Bingham (1974). Density (9) was suggested by Watson



-12-

(1965) and Scheidegger (1965), density (10) appears in Fraser (1979).

A fertile source of distributions is Brownian motion. If a particle

moves in JIR with independent steps dx=Edt , EE=O , EE2=a2  at time

steps dt , the probability density O(x,t) of its position x at time t

is given by

O(Xt) exp - x (17)

2ay1t

by well known arguments. If the same motion occurs on the circumference of

a circle of unit radius, the position e of the particle at time t is

given by

f(e,t) = O *(e+2wk,t) , (18)

= -,, expE-m2 a2t)expime

=i (l+2zexp(-ma 2t)cosme) . (19)
1 

(9

Because of (18), f(e,t) 4s often called the "rolled-up" or "wrapped" normal

density. (19) may be contrasted with the von Mises density which has the

Fourier series

I (I 'm (K)
(-r 1 csmO) (20)

Both (19) and (20) have modes at 0=0 and the agreement is remarkable if

the coefficients of cose are identified i.e.

e" 2t (21)
e l i l h l ... .)
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It may be shown (Hartmanand Watson (1976)) that stopping the circular dif-

fusion at a random time, the density (20) may be obtained exactly. Pitman

and Yor (1980) have shown that there is more than one such stopping time

distribution. Similar results are true for Qq

It is also possible to obtain the densities (8) and (9) by other dif-

fusion models. For example if we consider, following Kent (1976), a circular

diffusion like the previous one but with a drift term so that the step in

dt is

de = -csine dt + EAT

then, as t- , the chance that the particle will be found in the interval

(8,0+de) tends to deexpKcose , the von Mises density. If the step is given

by

de = -Ksin 2O dt + E v ,

the limiting density is proportional to expCcos2e , which is the q=2 form

of (9). An intuitive proof of the first of these results follows from con-

sidering a physical diffusion in a circular pipe of cross-section area A.

Let the concentration of particles at e be f(e) , then by Fick's law the

diffusion forward across A at 9 is -ADaf/ae , where D is a diffusion

coefficient. If the medium has a velocity v(e) at e , the transport

across A is Af(8)v(e) . At equilibrium the number of particles in the pipe

between 9 and e+de must be constant. Hence

(-AD; j + AD-!'+de)+(Afvl-AfvO+d6 ) = 0

ae 0 ele~O lede)
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or

Df"(vf)' 0 (22)

Setting v(e)=-Ksine and D=l , the solution f is seen to be proportional

to expKcos.

This argument is intimately connected with a well-known result in

statistical mechanics (see e.g. Joos (1947)) on the distribution of thermally

agitated magnetic dipoles, moment m, in a parallel field H . There it is

found that K=mH/kT -where T is the absolute temperature and k here

stands for Boltzmann's constant.

In the discussion of Kendall (1974), Reuter suggested another diffusion

model for (8). Let particles be steadily released from the origin of the

sphere llxll=l and record where they first hit lq . The distribution of

first hits will be uniform without any drift but if the drift is constant it

will have the density (8). To get an intuitive proof of this result, let f

be the equilibrium concentration of particles at any point in or on the sphere

when they are steadily produced at the rate of 1 per unit time at the origin.

Let them diffuse (but not interact with each other) in a medium that moves

with an arbitrary velocity v(x) . The answer we seek is 3f/ln,, , the

normal derivative of f on IjxII=i . If V is any small volume within the

sphere with boundary aV , the loss of particles from V due to transport is

f n.(vf)dS ,. IVIdiv(vf)

av

where n is an outward normal and dS an area element on 3V The gain

due to diffusion is

f 2dS - VvV2f
av a
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If V is a vanishingly small volume that does not include the origin and

equilibrium is attained, the concentration f satisfies

If - div v f = 0 , 11x0O,l (23)

f = 0 IfxIIMl

This is, of course, a generalization of (22). To ensure a suitable source

of particles at the origin we must demand that

1 1

rf- 2 (q$2) .

1 1. l og r(q=2) ,

as rllxI*O•

For the special case, q=2 , vx=C , Vy=O , we may try f=exp(kx) g(xy)

in (23). It is readily seen that if we choose k=c/2 , g must satisfy

2g =c 2 g
4

g 0 , r2=x2+y2=1 , (24)

g ', log ' ,r.O

But (24) implies that g is a function only of r . Hence

f(x.y) = g(r) exp T rcose

so that af/ar on the boundary r--l is proportional to exp(c/2 cose)

Inspection shows that the proof trivially extends to any number of q dimen-

sions. Finally by choosing other velocity fields, other distributions on
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the sphere may be obtained. This is technically difficult unless the velocity

fields are generated by a potential as in classical hydrodynamics.

Lecture 2 concluded with visual comparisons of many distributions on

the circle and sphere.
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3. INFERENCE PROBLEMS ON ng

3.1 Introduction

Testing whether a random sample of directions xl,...,xn has been

drawn from the uniform distribution is possibly the oldest significance test

problem. Bernoulli (1734) considered whether the orientations of the

planetary orbits were random. Watson (1970) reconsidered the problem with

modern data and used the normals to the orbital planes, directed by the

righthand rule. An intuitive and approximate test, using the length of the

vector sum 7.13 of the 9 normals, may be based on Rayleigh's result.

Naturally the null hypothesis is strongly rejected. By using Neyman-Pearson

theory, elegant and sensitive methods may be tailor-made when one has certain

alternatives in mind. These will be discussed in Section 3.4.

Much of the literature is concerned with estimation and testing prob-

lems when the data are assumed to be drawn from the von Mises-Arnold-Fisher

density (8). This will be briefly outlined in Section 3.2. Similar theory

and methods have been developed for other specific densities but space does

not permit mentioning them.

One is rarely certain that a specific distributional form obtains so

all methods of analysis should not be too sensitive i.e., they should be

robust. One may check the behavior, by computer simulation, of the methods

mentioned in the previous paragraph to see how resistant they are to changes

in distributional form and outliers in the data. Or better, try to design

new methods of analysis that will be robust. Another method is to make

few distributional assumptions but to assume that the samples are large

enough to permit fairly good approximations to be made--essentially that
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a Central Limit Theorem effect will operate. This is the topic of Section 3.3

3.2 Inference for the von-Mises-Arnold-Fisher distribution

The flavor of this topic is best seen by discussing only the case q=3

Then the density on the sphere 03 is

f(x) K 4sinhc exp K x'a K>O (25)

Clearly when x=0 , this becomes the uniform density, (4n) "l  As 0-,

all the probability concentrates about the mode a . The distribution is

always rotationally symmetrical about a . Of course IjaII=l

If a sample Xl,...xn is drawn from (25), the logarithm of the likeli-

hood of the data is, to a constant,

n log(K/sinhK) + K (Zxi)'a (26)

This is maximized by choosing a parallel to R=Ex .i Hence the maximum

likelihood estimator 8 of a is the direction of R=Ex i , the intuitive

estimator we met in Section 1. Thus a=R/R , where Rallxij11 . The value of

K which then maximizes (26) with A instead of a , k say, satisfies

coth K - W R (27)

K n

If A>3 and n is not too small, K'-k where

k =n- (28)
n-R

the intuitive accuracy estimator we met in Section 1. If a were known, and

we write X=a'R , the estimator of K would be fairly accurately
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n !

V" (29)
n-X

It is of course trivial to compute the exact maximum likelihood (m.k.)

estimators.

To find a confidence cone for the true modal direction a , we consider

the problem of testing the null hypothesis H0  that the true modal direction

is a . This is how the analogous problem for the linear normal distribution

is solved. There one can consider the analysis of variance identity

E(xj-Uo)2-= Z(xj-X)2 + n(X-PIo) 2  (30)

along with the distributional identity

no2X2 = l+ 2 (31)

where the terms on the righthand side of (31) are independent. To check

where x is too far from v. for the null hypothesis to be likely, we

notice that the ratio

n(- j -0o)2  Xf

_,___2_ = -= (32)

whose distribution is free of unknown parameters. In fact, if one multiplies

both sides of (32) by (n-l), the lefthand side is t2 and the righthand side

is distributed as Fl,n-l *

Returning to our problem, the analogue of (30) is

n - X = n-R + R-X (33)

because we saw in Section 1 that n-X and n-R were measures of dispersion

of the data about the true and estimated modes. In the next paragraph we
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will see that we may assert, if K is not small, that approximately

2K(n-X) A X~, 2K(n-R) -Xn.2 ),21c(R-X) A X (34)

and that the last two expressions are independent. Hence we have the

analogue of (32)

R-X X2 (35)

X2fn-1)

which, if multiplied.by (n-i) leads to the F2, 2 (n-l) distribution.

Large values of (32) and (35) both lead us to reject the null hypothesis.

Since X=Rcose where e is the angle between the true and sample modal

directions, the lefthand side of (33) is

R(l-cose)/(N-R)

so that the semi-angle gs of a 95% confidence cone is defined, to good

accuracy, by the equation

(n-1)(1-cose) R =

N - R F2,2(nl) (95%) (36)

To justify (34), we note that the Fisher density (25), put in

spherical polar anqles with x'a=cose , yields a joint density of B,¢

K exp(Kcose) sine
4wsinhK

Sic e - (l'c°Se)sine • I

if K is large. Thus 0 is uniformly distributed on [0,27r) independently

of e and w=K(l-cose) has a standard exponential distribution. Thus
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2w=X1 and exp(-w) has a uniform distribution on [0,1] . These results

were needed in Section 1 to justify a rough goodness of fit procedure. The

assertions (34) now become good guesses. In fact one must verify all this

intuitive approach by mundane methods. But if one understands it one can

guess how much more complicated problems should and can be solved e.g. in the

lectures this was illustrated with two sample problems. This adds

insights instead of merely mechanically applying classical inference methods

to derive procedures.

Other fully specified distributions may be more appropriate than (25)

in which case similar techniques may be used.

Mardia (1972) is primarily a summary of this aspect of our subject,

for q=2,3

3.3 Robust methods

One is rarely confident that one's data is a sample from a specific

distribution so it is ridiculous to use an analysis which is sensitive to

small changes in the parental distributional form. Any procedure (e.g. that

in (36)) can be checked by computer simulation. One simply invents a distribu-

tion, draws random samples from it, computesthe statistic again and again and

compares the observed with theoretical proportions. I found e.g. that the

test procedure implied by (36) was very robust but that related tests for

comparing K's were not--see Watson (1967).

Instead of checking whether a procedure is robust, it perhaps better to

set out to design procedures which will be robust. This is an active research

area nowadays in which Huber, Hampel and Tukey have provided key ideas.
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The most studied problem is: how to make sound inferences about the center

of a symmetric density on the line. It is assumed that the density behaves,

around the center, like the Gaussian but may further out have much heavier

tails.

The analogous problem on n3 would be to assume a rotationally

symmetric distribution

f = C(K;fo)f (K a-x) (37)

If fo is exp this (25). If the m.1. method is applied to (37) we find

that the estimator of a , a , must be parallel to

n f(K 8x.)
0 xi (38)

j=l fo(K aVx j )

in contrast to Ex for the Fisher distribution. The trick now is to design

this "weighted" sum so that it is not too sensitive to very aberrant vectors.

This is one of my current research projects.

If large samples are available, it is intuitively clear that we should

be able to learn from the data itself something about the shape of the

distribution sampled and so to design methods that will be effective whatever

the true distribution is. No such "adaptive" methods now exist.

For large 1 n1 /2 Zxj will have approximately a q dimensional

Gaussian distribution with a mean V and covariance Z defined by

2 f q f (x-q)(x-U)'fdw (39)

q q

The approach was first use i Sengupta and J.S. Rao (1966) and in the latter

thesis (Rao, 1969), compared with my analysis of variance (explained briefly
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in the last section) when f is the von-Mises distribution. However no

assumptions about f need to be made and no effort was made to estimate f

or to "tailor" the analysis to be particularly effective when f is "near"

the expKx'a form.

Wellner (1980), in an unpublished paper, took a similar approach but

assumed that the data came from an axially synnmetric distribution on Q3

i.e. that

f = f(a'x) (40)

For general q , it is easy to prove that, instead of (39),

u = pa • IpI.l :(41)

= c2aa + 2(q-aa )

where a and $ are simple functions of E(a'x) , E(a x)2  The procedures

which result will be more efficient than those of Rao if the rotational

symmetry is true.

In fact the commonest deviation from the von-Mises, Arnold, Fisher

distribution is lack of rotational symmetry but, except for my simulation

studies, there is no published work on this problem. Oval shaped clusters of

data on the sphere in paleomagnetism are often attributed to a mixture

of distributions with different modal vectors. Again, no studies have been

made of the effect of lack of independence on estimators of modal directions--

this can have a disastrous effect in linear problems and may be expected to

do the same on the sphere.
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3.4 Testing whether f is uniform

If on the null hypothesis H0 , f=W q and on the alternative H,, f=f,

then the Neyman-Pearson Lemma tells us to reject H0  in favor of H1  if
n
Ti f1 (xj) is too large. Suppose fl = f(Oqx) where Oq is a rotation
j=l
matrix. If Oq is unknown, it is reasonable to demand a test statistic

which does not depend upon what 0 is i.e. to demand an invariant test.
q

This leads to the test statistic

n
f I f(OqXj)dOq = ave ff(Oq xj) (42)

j=1 Oq

The statistic (42) may be trivially evaluated when q=2 because it

will naturally be written

27r n
f 1 f(6j+ )do (43)
0 1

In the particular case where f(s+n) expKcos(e+ ot/2 on I c(K) ,y(43) is

proportional to Io (KR) which (since >0) increases monotonically with R

(the length of the sum of the data vectors). Thus we can assert that in this

case the so-called Rayleigh test--reject uniformity if R is too large--is

the best invariant test. This test makes intuitive sense whenever the

alternative is uni-modal.

If the alternative density is very far from uniformity it should be

easy to design a sensitive test when one has enough data. But if the alterna-

tive density is close to uniformity, more care is obviously required. Beran

(1968) gave an elegant theory for testing for uniformity on compact homogeneous

spaces. To sketch this in our setting, we suppose a sequence of alternatives

to uniformity defined by
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fKx W + c{f(Oqx) -W"1 } ,0 (44)

The integral of f K(x) over Qq will be unity and f K(x) will be non-

negative for K small enough if f(x) is bounded on Qq . Of course,

fK(x) , the uniform density as -0 .
K q
Setting X=Ktq , Ave THf(O x.) is proportional to

qq

Ave l (1 + X{w f(OX.) - 11 )q qj

= Ave 1I + X E {wq f (Oqxj)-l} + XZ(w f(Oqx.)-l)(wqf (Oqxk- )]

q~ j#k q q f

plus smaller terms. The average of the coefficient of A is zero and the

coefficient of X2  may be simplified by the identity Eta ak=(ZaJ)2- a

Noting that

Ave (wqf(OqXj)- )2 independent of xj

Beran thus shows that the best invariant test for this sequence of local

alternative hypotheses is based on large values of

Ave E {w qf(Oq x)-l} ]2 (45)
Oq i

To complete the test we need the distribution of (45) when the data

actually come from a uniform distribution. This is naturally calculated by

Fourier methods. If we take a circle of unit perimeter and set

f(e) a cmexp12 me , it is easily shown that
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= cmexpi21qm Z expi2 mej (46)mfO j

fO[E{f(e.+)-}112do = 2 ZIcmI2f expi2wnej 2  (47)
01 j

Now it may be shown that, as n- ,

2 1Z expi27rmej1 2 -, m=,2, - .. , (48)
j3

and that these random variables are independent. Hence the asymptotic

distribution of

1 [Z{f(e + )-1]Zd (49)
n0

is that of

ZIcmI2 X2 " (50)
1

The statistic (47) has an intuitive interpretation. We will not pause to

give this or to explain how the distribution of (50) may be obtained. The

U2  statistic of Watson (1961) is a special case of (50) and is a circular

variant of the Cram~r-von Mises statistic.

Beran's work was motivated by Aine (1968) who defined special sequences

of local and distant alternatives,and Watson's use of Fourier methods. It

will be noted that to get statistics of the Kolmogorov type, which use the

supremum, it is necessary to use distant alternatives. This was explored
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further in Watson (1974), in the E.J.G. Pitman Festschrift.

An important point to notice here is that sample distribution func-

tions will not usually arise--they are natural only on the line. Further,

if the circle is a guide, supremum type tests can only be justified on

rather absurd grounds. However their mathematical interest has led to an

enormous literature.

The topic of testing uniformity is one of great mathematical interest

since it may be treated in greater generality than many statistical problems.

The papers of Gine (1975), Wellner (1979), Prentice (1978) give a flavor of

this work.

LI
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4. CONCLUDING REMARKS

In these three lectures, I have tried to illustrate, by reference to

directional data, the three sides of statistics:

* Data Analysis - especially the use of computers and graphics,

e Modellinq - use of stochastic processes,

e Inference - Estimation and Testing, Robustness.

I have made no effort to cover the entire spectrum of problems, solved and

unsolved, that arise with directional data. Many topics which I consider

to be important and interesting have been ignored.

Further we have seen that linear and spherical data must be treated

differently--the mathematical structure of the sample and parameter spaces

plays an essential role. For data in 1Rq , we have well defined notions of

mean, variance, covariance, correlation. These quantities are still not

satisfactorily defined on Q Again for parameters in IR we have
q

(modulo some technical arguments) firm ideas about what we mean by a "qood"

or "best" estimator. On nq , we have NONE!

We have seen how Pitman's early work on location and scale parameters,

and invariance can be greatly extended to data in homogeneous spaces. A

greatly extended general theory of statistics could be developed. The very

simple practical problems with unit vectors with which we began have led us

Into unknown territory.

Finally I would like to thank Prof. D.R. McNeil for bringing me back

to my native land and the Australian Mathematical Society for the invitation

to speak to their 21st Summer Research Institute.
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